Incorporating Spatial Image Features into English Chinese Machine Translation

Nate Carlson

Project Objective

- 1. Generate a synthetic dataset for EN-CN Multimodal NMT
- 2. Build Multimodal Transformer model inspired by (Helcl et al., 2018)
- 3. Analyze ability of model to leverage visual input to improve translation

Expectations

- Visual information will have minimal impact on translation quality in cases where no noise is present in source text
- Multimodal model will perform better than baselines in cases where synthetic noise is introduced via masking
- Incorporating visual information into the model at decoding time will yield the best results

Related Work

- RNN sequence models enhanced with global image features (Bahdanau et al., 2014)
- Attention between RNN hidden states and visual features (Caglayan et al., 2017)
- Transformer network replaces RNN with self-attention (Vaswani et al., 2017)
- Spatial image features in attention based transformer network (Helcl et al., 2018)

Project Objective

- 1. Generate a synthetic dataset for EN-CN Multimodal NMT
- 2. Build Multimodal Transformer model inspired by (Helcl et al., 2018)
- 3. Analyze ability of model to leverage visual input to improve translation

Dataset

- FM-QA
 - ~119,695 images
 - ~155,000 question answer pairs
- Flickr30k
 - ~30,000 images
 - ~150,000 descriptions
- Multi30k
 - Subset of flickr30k
 - ~30,000 images
 - ~30,000 descriptions
- Total
 - ~150,000 images
 - ~300,000 translation pairs

Project Objective

- 1. Generate a synthetic dataset for EN-CN Multimodal NMT
- 2. Build Multimodal Transformer model inspired by (Helcl et al., 2018)
- 3. Analyze ability of model to leverage visual input to improve translation

Visual Textual Cross Attention

- **Queries**: output of first attention block in encoder/decoder
- Keys, Values: projected image feature maps
- Allows model to add visual information to intermediary context vectors

Image Feature Extraction

- 3 Steps:
 - Extract
 - Flatten
 - Project

Projection Head

- Linear projection head + dropout(0.1)
- Nonlinear projection head (ReLU) + dropout(0.1)

Training Setup

- Training
 - Hyper Parameters
 - 20 epochs
 - 6 encoder layers
 - 6 decoder layers
 - 8 attention heads
 - hidden dimension 256
 - Dropout probability 0.1
 - Noam Optimizer (2000 warm up steps, betas 0.9 & 0.98)
 - Label Smoothing

- Data: Only used Flickr30k + Multi30k due to compute constraints
- 80%-10%-10% Train-Validation-Test split
 - Train: 55,127 instances
 - Validation: 6,891 instances
 - Test: 6,891 instances

Tools & Programming Languages

- Coded all in Pytorch
- For my base model I used code from the blog post below. I adapted the same code for the multimodal models.
 - https://cuicaihao.com/the-annotated-transformer-english-to-chinese-translator/

Project Objective

- 1. Generate a synthetic dataset for EN-CN Multimodal NMT
- 2. Build Multimodal Transformer model inspired by (Helcl et al., 2018)
- 3. Analyze ability of model to leverage visual input to improve translation

Evaluation Metrics

• BLEU:
$$BLEU = BP * exp(\sum_{k=1}^{n} w_k log(p_k))$$
• chrF+:
$$CHRF\beta = (1 + \beta^2) \frac{CHRP \cdot CHRR}{\beta^2 \cdot CHRP + CHRR}$$

Experiments

- Experiment 1: Where and how to incorporate visual context?
 - Encoder
 - Decoder
 - Encoder + Decoder
 - Image Projector
 - Linear or Nonlinear?
- Experiment 2: Ablation Studies
 - Blank images
 - Random images

- Experiment 3: Source Degradation
 - Probabilistic POS Masking: Mask nouns, verbs, adj w/ probability 0.3
 - **Deterministic Masking**: mask 2nd half of source sentence
- Experiment 4: Human Evaluations
 - 200 sentences evaluated in DQF framework

Results

Experiment 1: Where and how to incorporate visual context?

	BLEU	chrF	
base	54.27	48.31	
enc + linear proj	53.57	46.93	
enc + nonlinear proj	54.73*	48.23	
dec + linear proj	54.13	47.45	
dec + nonlinear proj	55.07*~	48.99*~	 * .
enc + dec + linear proj	49.77	43.75	~:
enc + dec + nonlinear proj	54.50*	48.53*	

• : outperformed baseline • : best performing model

Expectations

- Visual information will have minimal impact on translation quality in cases where no noise is present in source text
- Incorporating visual information into the model at decoding time will yield the best results
- Multimodal model will perform better than baselines in cases where synthetic noise is introduced via masking

Experiment 2: Ablation Studies

(dec + nonlinear proj)	BLEU	chrF
true images	55.07~	48.99~
blank images	54.81	48.57
random images	54.14	48.79

~: best performing model

Experiment 3: Source Degradation

Probabilistic POS Masking			
	BLEU	chrF	
base	38.01	32.59	
dec+nonlinear proj	39.37~	33.74~	
Deterministic Masking			~: best performing mode
	BLEU	chrF	
base	28.48	25.13	
			1

Expectations

- Visual information will have minimal impact on translation quality in cases where no noise is present in source text
- Incorporating visual information into the model at decoding time will yield the best results
- Multimodal model will perform better than baselines in cases where synthetic noise is introduced via masking

Sample Outputs: Probabilistic POS Masking

src: people are in a laundry mat washing clothes .

masked src: people are in a laundry BLANK washing clothes . base: 人们在黑色垫子上穿着深色衣服。(People wear dark clothing on black mats.) multimodal: 人们在洗衣垫上工作。(People are working in a laundry mat)

src: a man gives a fish to a boy .

masked src: a man gives a BLANK to a boy .

base: 一个人指着一个女人的手。(A man points to a woman's hand.)

multimodal: 一个男人把一个鱼线递给一个男人。(A man hands a fishing line to a man)

Sample Outputs: Probabilistic POS Masking

src: a family is posing with spongebob squarepants .
masked src: a BLANK is posing with BLANK squarepants .
base: 一个女孩正在摆姿势。(a girl is posing)
multimodal: 一个男人正在和海绵宝宝合影。(a man is taking a photo with spongebob squarepants)

src: man blows bubbles in a bathtub . masked src: man blows BLANK in a bathtub . base: 男子在田野里打篮球。(man playing basketball in field) multimodal: 男人在浴缸里吹泡泡。(a man blows bubbles in a bathtub)

Results

Experiment 4: Human Evaluations

Conclusions

- Visual information is most useful at when incorporated at decoding time
- Adding a nonlinear projection head to the images improves translation
- Visual information is most useful when there are gaps in source text
- Having the correct image bitext pairs yields the best results

Future Work

- Post editing of synthetic dataset generated in this project
- Training a larger model with all of the data
- Exploring other architectures

References

- Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv. <u>https://doi.org/10.48550/ARXIV.1409.0473</u>
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. arXiv. https://doi.org/10.48550/ARXIV.1706.03762
- Helcl, J., Libovický, J., & Variš, D. (2018). CUNI System for the WMT18 Multimodal Translation Task. Proceedings of the Third Conference on Machine Translation: Shared Task Papers, 616–623. <u>https://doi.org/10.18653/v1/W18-6441</u>
- Caglayan, O., Aransa, W., Bardet, A., García-Martínez, M., Bougares, F., Barrault, L., Masana, M., Herranz, L., & van de Weijer, J. (2017). LIUM-CVC Submissions for WMT17 Multimodal Translation Task. CoRR, abs/1707.04481. <u>http://arxiv.org/abs/1707.04481</u>
- https://github.com/cuicaihao/Annotated-Transformer-English-to-Chinese-Translator