
Filtering on Physiological Signals

Nathaniel Carlson, Andrew Williams, Zac Yauney

Abstract

In the process of developing a spectrometry-based non-invasive glu-
cose detector, one of the chief impediments is the noise present in the
spectrometry data. This noise comes in two varieties: the small constant
noise due to imperfections in the spectrometry process as well as intermit-
tent spikes in the data from discrete events such as bumping the device.
In this paper we employ state-spaced filtering methods to solve both of
these problems. We solve the constant noise by replacing a signal with
the filter’s estimation of the true value of the underlying state. We solve
the spike problem by cutting out the sections with spikes present and re-
placing the data with innovation from the filter algorithm. Results are
promising, with a reduction in noise and a interpolation that reasonably
approximates the true data.

1 Motivation and Overview

Background on problem, and goal Issues - two kinds of noise Rationale for
methods

Diabetes is a major issue in the world and its prevalence is only increasing.
One of the main components of diabetes treatment is keeping the patient’s blood
sugar within a healthy range. Doing this requires regular measurement of the
patient’s blood sugar levels so that the level can be adjusted either upwards
or downwards. Currently the predominant means of making this measurement
is sampling the patient’s blood and taking the measurement directly. Due to
the physical and logistical inconvenience, alternative non-invasive methods are
highly desirable. While there have been many attempts at solving this problem
using a variety of methods, none have been successful thus far. This paper
pertains to a project which attempts to use a wrist-mounted spectrometer to
obtain spectrographic data of the patient’s blood. From this data it should then
be possible to tease out the amount of glucose in the blood. The novelty in this
approach is that we have access to more data than other teams have had due to
the successful miniaturization of the spectrometer which allows it to be worn on
the wrist. In addition, a linear variable filter allows the spectrometer to gather
detailed data for a fairly wide range of wavelengths.

Unfortunately, glucose gives off a spectrum very similar to water and so the
glucose signal is very faint. The faint signal means that noise is a major problem
when attempting to measure glucose, as it diminishes an already small signal to
noise ratio. Thus it is of great importance to develop a method for dealing with
the noise. There are two main types of noise we want to deal with. The first
is the consistent noise associated with the light sensors and the spectrometer
apparatus as a whole. This noise has a relatively small amplitude but it can
muddy the waters and make the signal harder to detect. The second type of

1



noise is relatively infrequent but has large amplitude. This noise is introduced
by shocks in the real world, such as the spectrometer being bumped. Data
displaying the spikes characteristic of this noise is useless for glucose detection
and needs to be interpolated.

The Kalman Filter and particle filters are methods that allow us to solve both
of these problems. By estimating the underlying state responsible for the given
observations they can reduce noise, and by running the state equations forward
and backward in time they can be used to interpolate the correct values for the
data in regions where a spike has been introduced. This paper will describe our
use of both methods to solve these noise problems.

Figure 1: Spectral data for water and glucose. Note how similar they are to
each other.

2 Data

The spectrographic data is a time series, with readings taken every 10ms. Each
reading consists of 128 values, each giving the recorded light intensity at a differ-
ent wavelength. These wavelengths are equally spaced from 872nm to 1654nm.
When working with this data we typically use data from a pixel recording light
at approximately 1050nm. This wavelength gives us the clearest signal and
shows a visible dicrotic notch, evidence that we are indeed detecting the pa-
tient’s heartbeat.

Our dataset consists of dozens of hours of data recorded over a period of
several months and spanning several test subjects, but because these methods
are not deep learning methods we will only use a small subset of that data to
develop the filtering algorithms. The data is reliable in that we trust the source
of the data, but there are reliability concerns regarding the accuracy of the
spectrometer because it is still undergoing active development. The data may
or may not be suitable for actually answering questions about blood glucose

2



content, the point of the research is to determine whether or not it is. The
dataset should be perfectly suitable, however, for testing the efficacy of various
filtering methods on the spectrometer data.

Figure 2: Normal spectrographic data at 1050nm. This image displays data
recorded over a period of approximately 10 seconds.

3 Methods

First we discuss the data processing pipeline that was built to convert the raw
data into appropriate input for our algorithms. Then we discuss two different
type of state-space models that were employed: The Kalman filter and particle
filtering.

3.1 Data Engineering

In its raw form the data consists of two sets of measurements interleaved together
into one dataframe. The first type of measurement is called ”dark current” and
it records the amount of light the detector registers when the device’s LEDs
are turned off. Because this varies over time due to ambient light conditions
and other factors, it is periodically re-measured. The other measurement is the
actual spectrographic data taken with the LEDs on. We subtract the mean
of each dark current reading from the subsequent spectrographic data so that
ambient light conditions do not skew the readings.

After subtracting off the dark current we detrend the data using a high-pass
Butterworth filter. This removes the influence of factors such as the patient’s
respiration. It also gives us data with zero mean.

Once these steps have been taken the data is ready for processing with the
filtering methods.

3



3.2 Kalman Filter

The Kalman filter is a standard method for estimating true state based on
noisy observation data. The Kalman filter algorithm essentially uses a state
function to predict the next state of a system and then compares that state to
the observed truth with an observation function. Then the algorithm updates
the state based on that observation. One caveat with the Kalman filter is that
a well defined state function is needed in order for the algorithm to correctly
to interpret the data. In our case, we have no idea what these underlying state
functions are, since the underlying dynamics are hopelessly complex.

One solution to this issue is to use an auto-correlation algorithm called
SBR (Stochastic Balanced Realization) in order to estimate the underlying state
equations. Using this algorithm, the states can be estimated, and we can com-
pare the true (noisy) data with the output generated by the product of the
observation matrix and the estimated state.

Using this approach we can see that reasonable approximations to the un-
derlying state equations have been found by the SBR algorithm, since the data
are so well represented by the estimated states.

Figure 3: Using our underlying states, we can compare the output of the product
of the observation matrix with the state and the true data.

3.3 Particle Filter

Particle filters are a class of Bayesian filtering algorithms that can be used to
estimate the true state of a system based on noisy observations. The general idea
behind particle filter methods is to sample a set number ofK particles p1, . . . , pK
from an initial distribution X ∼ µ(x0). Each of these particles represents a
possible belief of the true state of the system. Each particle is assigned a weight

4



w1, . . . , wK , e.i. the probability that a particular particle represents the true
system state. At the beginning we have no reason to believe that any one
particle is a particularly good estimate so we initialize the weights uniformly to
1 / K.

We look to the Particle filter algorithm as an improvement over the Kalman
filter to account for nonlinear state functions. The Kalman filter requires that
the state function be linear, but we have no guarantee that this is actually the
case. Thus we use a probabilistic approach to sample the state space and then
use the particle algorithm to account for the error introduced by our assumption
that the state functions are linear.

Another benefit of this approach is that a distribution of possible states
at each time step is generated, which allows us to quantify our uncertainty at
each step. With this approach we may be able to weight the certainty at each
step, and allow lower uncertainty states to have more influence in future feature
extraction algorithms.

3.3.1 Predict

The first step of the algorithm is the predict step. Here we use our model to
transition each of the particles into a new state. The particle filter algorithm
requires some prior knowledge of how a system transitions from both state to
state and state to observation. We use the linear Gaussian model parameters
estimated from the SBR algorithm for the predict and observe steps in our
particle filter algorithm. Thus the particles are transitioned from time t to t+1
by

pt+1,j = Fpt,j +N (0, Q), j = 1, . . . ,K

For our initial distribution µ(x0) we sample from a multivariate normal distri-
bution N (x0, 10

−6 × I) where x0 is the first state estimate obtained from the
Kalman Filter applied to the same data. It should be noted that particle filters
do not require that the system in question be either linear or Gaussian. However,
we felt that while non-linear parameter estimation is possibly an interesting area
of future work, it was outside of the scope of this project.

3.3.2 Update

After we compute the new states in the predict step we must update the particle
weights according to how well their corresponding predictions match the noisy
observations at a given time. The predicted observations for time i are obtained
via

ot,j = Hpt,j +N (0, R), j = 1, . . . ,K (1)

We measure how well each particle corresponds to our observations using the
p.d.f. of the Cauchy distribution, that is at time t for each particle we compute

dist(j) =
1

π(1 + (zt − ot.j)2)
, j = 1, . . . ,K (2)

We multiply each of the weights by the result of the dist function between
their corresponding estimates and the current observation. In a Bayesian frame-
work the dist function is our likelihood giving us the probability of observing zi

5



given a particular particle. Multiplying this by our prior distribution of weights
gives us an updated posterior distribution for how well each particle represents
the true state of the system.

We experimented with using the p.d.f of a normal distribution centered at zi
to measure goodness of fit but it gave very poor results as most of the weights
would quickly go to zero. The Cauchy distribution p.d.f. has much more mass
concentrated near its tails than the normal distribution. We hypothesize that
the fatter tails in the Cauchy distribution compared to the normal distribution
allowed the weight updates to be more forgiving not assigning a weight near 0
for particles that were slightly further away from a given observation.

3.3.3 Resampling

The naive particle filtering algorithm suffers from a degeneracy problem. If
we start with particles drawn from µ(x0) with uniformly distributed weights
it is possible that only a small number of them will accurately reflect the true
state of the system. This results in the majority of the particles being assigned
an extremely low weight. If the algorithm is allowed to run like this for several
iterations it will eventually collapse leaving us with no particles with meaningful
predictive power. Thus, it is necessary to resample particles that have low
weights and replace them with more probable ones. A good rule of thumb to
determine when it is time to resample is the effective N defined by

Neff =
1∑K

i=1 w
2
i

(3)

When this value falls below a certain threshold we automatically resample
our particles. We found that setting this threshold equal to the total number of
particles K yielded good results. We use the systematic resampling algorithm
implemented in the FilterPy package to determine which particles to resample.
Systematic resampling divides the weights uniformly into N groups and uses
a single random offest to determine the index to resample from in each group.
After resampling we reset the particle weights to the uniform distribution as per
standard practice

3.3.4 Estimate

Once we update the weights according to the new observation, we can make
predictions about the current state of the system at time t by computing the
mean and covariance of the particles and the observations they generated. .

µstatet =

K∑
j=1

wtjptj , Σstatet =

K∑
j=1

wtj(ptj − µstatet)(ptj − µstatet)
T (4)

µobst =

K∑
j=1

wtjotj , σ2
obst =

K∑
j=1

wtj(otj − µobst)
2 (5)

Full pseudo code for our particle filter implementation is provide in Algo-
rithm 1 located in the appendix.

6



4 Results and Analysis

We analyze the results of our state space models on two important tasks. The
first is noise reduction, taking a noisy signal and reconstructing a smoother
signal that is a better approximation of the ”true value” of the underlying
phenomenon. The second task is using the filter’s innovation capacity to impute
values for sections of the data where there was a corrupting influence, i.e. the
subject bumped their arm against something at that point.

Figure 4: Results of the particle filter on a sample of 1000 readings of spectrom-
eter data. The noisy observations are plotted in blue, while the particle filter
mean and variance estimates for the observations are in red and grey respec-
tively.

4.1 Noise Reduction

One method to improve our estimates of the data is to apply a Kalman smooth-
ing algorithm. The Kalman smoother algorithm essentially computes a back-
ward pass of the state equations, taking into account future and past data in
order to give a better estimate of the states. This smoothing effect is seen as a
reduction of noise in the states, which also translates to a reduction in noise of
the predictions. Although this algorithm doesn’t dramatically change the state
estimates, the smoothed states are certainly less driven by the noise process.

The particle filter is advantageous since instead of giving us a single point
estimate for the a state it provides a distribution over the space of all possible
states. We found this to be useful when attempting to reduce noise in our data
since it allows us to quantify the uncertainty of our predictions. The particle
filter yielded good results on the data we applied it to. Figures 4 show its ability
to model the underlying signal in the data amidst noisy observations. Figure 5
shows a more focused sample of observations and particle filter estimates. It is
clear from this plot that the particle filter is robust to outliers and noise points

7



Figure 5: The results of the particle filter noise reduction

that are present in the data, overall it provides a much cleaner signal than the
raw data.

4.2 Interpolating Bad Data

The standard Kalman Filter is a powerful way to estimate the true state of a
noise corrupted process. One issue with the dataset given is that in order to
successfully extract the most important features, long stretches of uninterrupted
data are needed, and the data contain many noise artifacts that would interfere
with extraction algorithms. One method to ameliorate this situation is to use
the Kalman state equations to generate data to fill in the corrupted data.

Using the state equations developed in section 3.2, the interpolation first
identifies the state of the data immediately prior to the corrupted data, then
the state equations are allowed to run without an update from observations.
This generates data which runs according to the same state equations used in
the smoother. Although the data generated data does not exactly match the
true data, the generated data is significantly less noisy than the corrupted data,
making it much more suitable for our feature extraction algorithms.

One issue with this method is that we have no guarantee that the predicted
data will line up with the actual data once the interpolation period ends. We
might hope that the Kaman smoother would fix this, but we do not see such
success in our experiments.

We see that the smoothed estimates are less noisy than the observed data,
but still do not link up correctly with the observed data we see after the inter-
polation period. (The smoothing algorithm is designed to do just that: smooth.
If we ask it to drastically change the course of the estimates we are not using
the smoother correctly.)

One way to solve this issue is to implement a pseudo-particle filter strategy:
namely by computing an interpolation step that overlaps the actual data by 50

8



Figure 6: Example of a noise artifact that would interfere with feature extraction
algorithms.

data points, and then compute the mean-squared error between the interpolation
and the true data in the overlap section. Because the interpolation step is
stochastic (since we introduce noise generated by the noise process at each
transition step) we essentially compute a multi-step ”particle” (really a sample
path of a martingale defined by our noise process) and we compute the non-
normalized likelihood of the last 50 data points given our observed data. We
then only accept the interpolation if the MSE of the overlap is lower than a
predetermined threshold.

Here we see that our efforts have resulted in a quite effective interpolation
algorithm. More study is needed to perfect this process, but we are impressed
with the success of this method.

Reviewing our results, we see our team was able to quite successfully estimate
underlying state information and use it to overwrite sections of data corrupted
by noise. Using this along with the Kalman smoother in order to extract noise
reduced states, we have had great success in preparing a data set that can be
easily fed into feature extraction algorithms and models which produce glucose
estimates. Although the success of our efforts here is not entirely quantifiable
until those feature extraction algorithms are more mature, we do expect to see
a great improvement over those algorithms on data that has not been filtered
and processed as we have done in this paper.

4.3 Ethics

Ethically, this project is quite strong. If successful, it stands to alleviate human
suffering and improve general quality of life for millions of individuals, both those
with and without diabetes. In theory it is possible that continuous monitoring

9



Figure 7: Here we see an example of generated data vs the true data, demon-
strating the effectiveness of this technique.

of blood contents could be used nefariously if the patient’s privacy was breached,
but that is true of a plethora of technologies that are widely considered to be
good. As long as the data remains in the right hands, it should inform the
patient and their doctor in ways that will help them make the best decisions.
There just needs to be strong safeguards along HIPAA lines protecting the
device’s data from those who might misuse it. Along these lines, the device and
its software need to be fortified against intrusion in the form of cyberattacks.

If the device were to be sold without the algorithm being effective, then there
could be serious medical consequences for the end users because they would take
the wrong actions to control their blood glucose.

4.4 Future Research

In the future we will look in to using deep learning to estimate hidden states
and interpolate the data. The weakness of our current method is that it requires
some a priori knowledge about the distribution of the hidden states, and our
intuition may not be correct in this case. A deep learning method might be able
to approximate the state equations more effectively by analyzing a large volume
of spectrographic data.

References

[1] https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

[2] https://www.stats.ox.ac.uk/ doucet/doucetjohansentutorialPF2011.pdf

10



A Pseudo Code

Algorithm 1: Particle Filter
1 function Predict(F, Q, p1, . . . pK)

// Predict next particle states
2 for i ∈ {1, . . . , K} do
3 pi ←F pi +N (0, Q)

4 return p1, . . . , pK

5 function Observe(H, R, p1, . . . , pK)
// Initialize observations

6 o1, . . . , ok ←0, . . . ,0
7 for i ∈ {1, . . . , K} do
8 oi ←Hpi +N (0, R)

9 return o1, . . . , oK

10 function Update(H, R, z, p1, . . . , pK, w1, . . . , wK)
11 o1, . . . , oK ← Observe(H, R, p1, . . . , pK)

// Update weights based on current observation z
12 for i ∈ {1, . . . , K} do

13 wi ←wi × (1 / (ε + (z − oi)
2))

14 return w1 /
∑K

i=1 wi, . . . , wK /
∑k

i=1 wi

15 function Estimate(w1, . . . , wK, o1, . . . , oK)

// Estimate µ and σ2

16 µ ←
∑K

i=1 wioi

17 σ2 ←
∑K

i=1 wi(oi − µ)2

18 return µ, σ2

// The main function

19 function ParticleFilter((zi)
N
i=1, θ = (F,Q,H,R), K, N, µ(x0))

// Initialize weights and particles
20 w1, . . . , wK ←1 /K, . . . , 1 / K
21 pi ∼ µ(x0) for i ∈ {1, . . . , K}

// Main algorithm
22 for i ∈ {1, . . . , N} do

23 p1, . . . , pK ← Predict(F, Q, (pj)
K
j=1)

24 w1, . . . , wK ← Update(H, R, zi, (pj)
K
j=1, (wj)

K
j=1)

// Resample if effective N falls below threshold

25 if 1 /
∑k

j=1 w2
j < K then

26 p1, . . . , pk ← SystematicResample((pj)
K
j=1, (wj)

K
j=1)

27 w1, . . . , wK ←1 /K, . . . , 1 / K

28 o1, . . . , oK ← Observe(H, R, (pj)
K
j=1)

29 µi, σ
2
i ← Estimate((wj)

K
j=1, (oj)

K
j=1)

30 return (µi)
n
i=1, (σ

2
i )

n
i=1

11


