
Exploring Performance of Target and Context
Word Embeddings on Extractive Text

Summarization

Nate Carlson

3/21/22

Abstract

Extractive text summarization refers to the task of selecting a
subset of K sentences that best convey the overall meaning of a
given document. Both static word embeddings (word2vec, fastText,
GloVe) and contextual word embeddings (BERT) have been used to
accomplish this task. Static word embedding models learn 2 sets of
embedding vectors, typically termed ”target” and ”context” embed-
dings. This work explores structural differences in target and context
space, and analyzes performance differences between the embedding
sets on two extractive text summarization approaches TextRank and
k-means clustering. This project also includes a comparison between
static embeddings and contextual embeddings for extractive summa-
rization. My code is available at https://github.com/natbcar/

TextSummarization

1 Introduction

Modern approaches to text summarization can be divided into two classes:
abstractive and extractive. Abstractive summarization more closely mirrors
the approach that a human would take to solve this task. It generates a
unique paraphrase, possibly using words that are not in the document vo-
cabulary, that conveys the main ideas found in the document. This approach
is very desirable, since it mimics a a humans thought process and has been
shown to produce impressive results. However, it suffers from several draw-
backs including a time and energy intensive training/fine tuning process and
potentially volatile outputs. Due to these contraints, this project explores
extractive text summarization since it provides a more straight forward and
tractable solution to the summarization problem.

Extractive text summarization can be defined as follows: given a doc-
ument D = s1, . . . , sN , where the si are the sentences that make up the
document, extract the K most relevant sentences in the document. In this
project use two popular approaches to extractive summarization, the Tex-
tRank algorithm and k-means clustering (described in 3). I use word2vec

1

Figure 1: Distribution of word norms for word2vec target and context em-
beddings. Note the that the distribution of context vector norms has greater
variance and much larger mean compared to that of target vectors.

target and context embeddings in each of these frameworks and compare
their performance. For the k-means approach I also use BERT sentence em-
beddings to provide a comparison between static and contextual embeddings
for this task. In section 2 I provide a hypothesis as to why target and context
vectors might perform differently on extractive summarization.

2 Word2vec Analysis

The word2vec skip-gram [3] model learns word representations via solving
a neural context prediction problem. The word2vec architecture is a simple
MLP with a single hidden layer and no activation function. Given a word the
model seeks to maximize the dot product between the in weights associated
with the word in question and the out weights of words that occur frequently
in the same context window. We refer the to input words as the target and
its neighbors as context. Typically the target embeddings (or in weights) Win

are extracted and used as word representations for downstream tasks, while
the context embeddings (out weights) Wout are typically discarded. However,
we will show in this section that the structures of target and context space
are inherently different, and that these structural differences make context
embeddings particularly well suited for summarization tasks.

The training of the word2vec skip-gram can be summarized by two
actions [4]

• Action 1: Maximize the dot product between target embeddings for
input words and context embeddings for their neighbors

• Action 2: Negative sampling, or minimize the dot product between

2

target embeddings for input words and randomly sampled context em-
beddings

The context vectors in Action 2 are sampled from the distribution of square
rooted word frequencies, while target and context vectors in Action 1 are
both sampled from the distribution of true word frequencies in the corpus.
This means that context vectors for less common words will appear more
frequently in Action 2 than in Action 1, conversly context vectors for
common words will appear more frequently in Action 1 than in Action 2.
Since context embeddings, unlike target embeddings, do not appear with the
same frequency in the two training tasks, there is more variability in their
lengths. Context vectors likely become large to product high positive dot
products with neighbors and low negative dot products with non-neighbors.
We can observe this phenomena by plotting the distributions of word norms
for target and context embeddings seperately, see Figure 1.

Interestingly, the vector norms for stop words in context space are on
average far shorter than the norms for non stop words. I computed the
average stop word norm for context embeddings and compared it against
the average context embedding word norm. The average word norm for
context embeddings is 17.74 while the average stop word norm is only 6.22.
This phenomena does not occur in targe space where the average stop word
norm is 2.86 and the average word norm is 1.85. In context space stop
word vectors are on average 3 times smaller than vectors for regular words.
This suggests that context embeddings might be uniquely well suited for
tasks that involve summing word embeddings together, i.e. extractive text
summarization. Since stop word norms are much smaller than regular word
norms the sentence embeddings created in these extractive summarization
tasks will not be diluted by stop words that contain no meaninful information.

3 Approach

3.1 TextRank

The TextRank algorithm [2] constructs a matrix of similarity scores between
sentences in a document and runs the PageRank algorithm to obtain a rank-
ing of the sentences, the top K sentences are then concatenated and returned
as the summary. There are several choices one must make when implement-
ing TextRank including how to represent a sentence and how to compute
similarity between two sentences. The original TextRank paper represents a
sentence as a bag of words, that is a vector whose length is equal to the size
of the vocabulary that has a n in the ith index if the ith word appears n times
and a 0 otherwise. Given two sentences in a document si = wi

1, . . . w
i
ni

and

sj = wj
1, . . . w

j
nj

the TextRank paper algorithm uses the following similarity
measure.

Similarity(si, sj) =
|{wk | wk ∈ si&wk ∈ sj}|

log |si|+ log |sj|
(1)

3

The obvious draw back to the above mentioned approach is that a bag of
words vector does not capture the semantic meaning of a sentence. Re-
searchers have also used static word embeddings like word2vec to represent
sentences in TextRank [6] and computed cosine distance between sentences
to construct the similarity matrix.

3.2 K-Means

Another approach to extractive text summarization is to use k-means cluster-
ing [5]. This method is both simple and intuitive, the algorithm is as follows.
Create an embedding for each sentence si in a documentD = s1, . . . , sN using
some embedding algorithm, in our case word2vec or BERT. Once embeddings
e1, . . . , eN are obtained for each sentence in the document run k-means clus-
tering on the sentences for a set number of clusters K. After clustering the
sentences for each cluster centroid ci find the closest sentence, that is

xi = argmin
e∈Ci

||ci − e|| (2)

where Ci is the set of all embeddings assigned to cluster i. Then simply con-
catenated the sentences associated with x1, . . . xK to construct the summary.

It makes sense that this method could be effective if the sentence em-
beddings can accurately capture the semantic information in the articles. If
sentences are able to be partitioned into distinct semantic clusters that each
represent a different subtopic in the article, then taking the most represen-
tative sentence from each cluster would provide a reasonably good overall
summary of the article.

4 Data

The BBC News Summary dataset [1] contains 2225 articles from 5 different
news categories including business, entertainment, politics, sports, and tech.
Each article is paired with a brief summary of the article contents.

5 Experimental Setup

For each article I compute a 3 sentence summary. I then compute the Rouge-
1, Rouge-2, and Rouge-L scores and average them on a per-topic basis. Due
the the results of the analysis performed in section 2 I hypothesize that
word2vec context will outperform word2vec target in both approaches. For
each method I also used pretrained BERT embeddings to compute sentence
similarity to perform a comparison between static and contextual embeddings
for extractive summarization.

I used word2vec embeddings that were trained on Wikipedia text here
at BYU. For BERT I use the all-MiniLM-L6-v2 model from the Sentence
Transformer library.

4

5.1 TextRank

I evaluate the TextRank algorithm using word2vec target embeddings and
context embeddings to compute sentence similarity.

This project does not compare the original implementation of TextRank
given in equation (1) with the word3vec implementation. Instead, I focus
on comparing performance of TextRank implemented using word2vec target
and context vectors.

5.2 K-Means

For the k-means clustering experiments I set the number of clusters to be 3
to obtain a 3 sentence summary. I used the scikit-learn implementation of
k-means clustering with the default parameters. For each article I cluster I
also report the k-means inertia and analyze the correlation between inertia
and Rouge scores.

6 Results/Analysis

Business Rouge-1 Rouge-2 Rouge-L
w2v target 0.543 0.429 0.533
w2v context 0.567 0.458 0.559

Entertainment Rouge-1 Rouge-2 Rouge-L
w2v target 0.542 0.435 0.533
w2v context 0.566 0.458 0.557

Politics Rouge-1 Rouge-2 Rouge-L
w2v target 0.537 0.427 0.526
w2v context 0.528 0.411 0.518

Sports Rouge-1 Rouge-2 Rouge-L
w2v target 0.520 0.412 0.510
w2v context 0.529 0.418 0.519

Tech Rouge-1 Rouge-2 Rouge-L
w2v target 0.492 0.369 0.481
w2v context 0.499 0.371 0.487

Table 1: Results for TextRank extractive summarization on the BBC News
dataset. The mean Rouge-1, Rouge-2, and Rouge-L scores are presented for
each topical category. The best scores for each column are bolded

6.1 TextRank

The results of the TextRank experiment are presented in table 1. Overall
we observe that context embeddings perform slightly better, beating target
embeddings on 4 of the 5 topic categories. However, the difference in scores

5

between target and context embeddings seems minimal. To further inves-
tigate the differences in performance between target amd context vectors I
performed a T-test on the means of their scores. I performed the test across
all topics for Rouge-1, Rouge-2, and Rouge-L scores. The p-value for Rouge-1
was 0.134, Rouge-2 was 0.548, and Rouge-L was 0.159. None of the p-values
provided enough evidence to reject the null hypothesis that the means of the
scores are identical. The size of the test set was rather small at just 2255
articles. Perhaps further investigation on a larger test set could uncover any
statistically significant differences in scores if they exist.

Business Rouge-1 Rouge-2 Rouge-L K-Means Inertia
BERT 0.471 0.342 0.460 7.62
w2v target 0.484 0.363* 0.474 1831.59
w2v context 0.485 0.363* 0.457 6635.40

Entertainment Rouge-1 Rouge-2 Rouge-L K-Means Inertia
BERT 0.487 0.370 0.478 8.65
w2v target 0.464 0.384 0.465 1972.15
w2v context 0.460 0.375 0.460 7539.83

Politics Rouge-1 Rouge-2 Rouge-L K-Means Inertia
BERT 0.435 0.305 0.424 11.47
w2v target 0.438 0.312 0.426 2949.78
w2v context 0.439 0.313 0.429 10967.35

Sports Rouge-1 Rouge-2 Rouge-L K-Means Inertia
BERT 0.450 0.359 0.450 8.89
w2v target 0.455* 0.369 0.455* 1928.95
w2v context 0.455* 0.367 0.455* 7698.84

Tech Rouge-1 Rouge-2 Rouge-L K-Means Inertia
BERT 0.422 0.287 0.411 13.03
w2v target 0.407 0.271 0.395 3113.46
w2v context 0.397 0.259 0.384 11204.29

Table 2: Results for k-means clustering extractive summarization on the
BBC News dataset. The mean Rouge-1, Rouge-2, and Rouge-L scores are
presented along with mean k-means Inertia for each of the 5 different topical
categories. Best scores for each metric are bolded, note that * denotes a tie
between two models.

6.2 K-Means

The results of the k-means experiments are displayed in table 2. Perhaps
the most significant observation from the experiments is the competiveness
of word2vec with BERT. The BERT based approach only beat out word2vec
on the entertainment and tech sections, with either word2vec target or con-
text beating out BERT on the remaining categories. This is significant since
constructing sentence embeddings using pretrained word2vec is computation-

6

ally cheaper than with BERT. If word2vec provides competitive performance
on this task with less computational cost, it may be a better choice despite
the fact that contextual language models like BERT generally exhibit better
performance on natural language tasks.

Figure 2: K-Means inertia plotted against Rouge-1 scores across all 5 topic
categories for BERT, w2v target, and w2v context. R2 values are included
in the title.

Another observation from the tables is the strong negative correlation
between k-means inertia and Rouge scores 1. Inertia is the sum of squares
distance from points in a cluster to the cluster centroid. Inertia can be
thought of as a measure of how well the data form well defined clusters. It
is intuitive then that lower inertia values would result in better summaries
since more well defined sematic clusters . This can be seen in figure 2 where
I have plotted the inertia values against Rouge-1 scores for BERT, word2vec
target, and word2vec context along with a line of best fit interpolating the
data points, a clear strong negative correlation appears in all three plots.

Unfortunately contrary to our expectations there was no clear difference
in performance between word2vec target and context embeddings. Perhaps
summing vectors to create sentence embeddings diluted the individual mean-
ings for the word embeddings too much making the structural differences
between target and context space relatively unimportant.

7 Conclusion

In this project I compared the performance of word2vec target and context
embeddings on two extractive text summarization approaches, TextRank and
k-means clustering. Contrary to my hypothesis there was not a statistically
significant difference between target and context embeddings for either of
the approaches. Most notably, static embeddings outperformed contextual
BERT embeddings on the k-means method in 3 of the 5 topical categories
suggesting that static word embeddings might be the better choice if one is
looking for fast off the shelf performance with minimal fine tuning.

1Note that because the structure of the embedding space for all three algorithms is
inherently different it is not meaningful to compare inertia values across algorithms. How-
ever, comparing inertia for the same algorithm on different test sets can yield meaningful
insights.

7

References

[1] Derek Greene and Pádraig Cunningham. Practical solutions to the prob-
lem of diagonal dominance in kernel document clustering. In Proc. 23rd
International Conference on Machine learning (ICML’06), pages 377–
384. ACM Press, 2006.

[2] Rada Mihalcea and Paul Tarau. TextRank: Bringing order into text.
In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, pages 404–411, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics.

[3] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space, 2013.

[4] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their com-
positionality, 2013.

[5] Derek Miller. Leveraging BERT for extractive text summarization on
lectures. CoRR, abs/1906.04165, 2019.

[6] Xiaolei Zuo, Silan Zhang, and Jingbo Xia. The enhancement of TextRank
algorithm by using word2vec and its application on topic extraction. Jour-
nal of Physics: Conference Series, 887:012028, aug 2017.

8

